We have all struggled at times when designing a CCTV system, trying to find the right lens for the right image, camera position, distances, etc. This time is now over, thanks to some smart programmers from Russia who have made the CCTV system design job easier, more accurate and more professional with their very clever drafting software called VideoCAD. We highly recommend it and if you get in touch with the author, just mention this article in CCTV focus, and you’ll get a special discount.

VideoCAD is a drafting and calculating tool that can help you define camera positions and angles of coverage when designing a CCTV system of any size.

VideoCAD is user-friendly, allowing even beginners to use it effortlessly. Until now, many requests about a CCTV system would not have been addressed properly and accurately due to many variables one can find in defining camera locations, angles of view, CCD chip sizes, object distances, recognition of faces or vehicle licence plates. Even skilled and experienced engineers have a hard time finding the correct lenses, number of cameras and positions. Thanks to VideoCAD this is no longer a problem.

VideoCAD practically boosts the quality of CCTV to new levels. There has been no such tool on the market until now.

So, what are the things you can do with VideoCAD? The list is quite extensive.

- You can determine the most suitable lenses, heights and locations for camera installation in order to provide viewing areas with possibility to: detect and identify a person and also read license plates.
- You can choose the best camera location for the desired outcome using the graphics window with CAD interface.
- VideoCAD can help you calculate the horizon-
tal projection sizes of viewing, person detecting, identifying and license plate reading areas to draw them on the object plan.
- You can choose the best camera location for the desired outcome using the graphics window with CAD interface.
- VideoCAD can help you calculate the horizontal projection sizes of viewing, person detecting, identifying and license plate reading areas to draw them on the object plan.
- It is possible to measure distortions of the viewing area arising from natural obstacles.
- VideoCAD allows you to easily calculate the image size of any object on a CCTV display (as seen by a camera), in the percentage of the display size, in pixels, TV lines and millimetres.
- VideoCAD can produce a drawing containing two projections of objects layout with their respective camera images. Also, the viewing areas are calculated, indicating cable distances, showing grid coordinates and text to be pasted into explanatory notes as an illustration as well.
- With VideoCAD it is also possible to produce a text file with full description of all the cameras in the project, viewing areas and cables. This can be easily pasted into the project as text or used as installation instructions.
- You can study the influence of the criteria of person detection, identification and license plate reading on the sizes and location of the corresponding areas by changing the criteria according to the video image quality obtained.
- You can study the principles of object representation in different viewing positions using test objects and the graphic window.
- VideoCAD helps you calculate the length and the electric parameters of the cables.
- VideoCAD optimises your system design by showing you minimum number of required cameras and cable, which increases your chances in winning various tenders.
- The automation in VideoCAD reduces your wasted time in trying to find out the correct camera position and improves the design quality.

To summarise, VideoCAD allows you to do the following:
- Calculate a view area horizontal projection according to the lens focal length, image sensor format, camera installation height, the required minimal and maximal heights and the maximal range of surveillance.
- Calculate the horizontal projections of the person detection
- Identify license plate recognition areas according to the lens focal length, image sensor format.
- Define the camera installation height, the required maximum height and range of surveillance.
- Determine a full or partial object hitting in the

We have all struggled at times when designing a CCTV system, trying to find the right lens for the right image, camera position, distances, etc. This time is now over, thanks to some smart programmers from Russia who have made the CCTV system design job easier, more accurate and more professional with their very clever drafting software called VideoCAD. We highly recommend it and if you get in touch with the author, just mention this article in CCTV focus, and you’ll get a special discount.

VideoCAD is a drafting and calculating tool that can help you define camera positions and angles of coverage when designing a CCTV system of any size.

VideoCAD is user-friendly, allowing even beginners to use it effortlessly. Until now, many requests about a CCTV system would not have been addressed properly and accurately due to many variables one can find in defining camera locations, angles of view, CCD chip sizes, object distances, recognition of faces or vehicle licence plates. Even skilled and experienced engineers have a hard time finding the correct lenses, number of cameras and positions. Thanks to VideoCAD this is no longer a problem.

VideoCAD practically boosts the quality of CCTV to new levels. There has been no such tool on the market until now.

So, what are the things you can do with VideoCAD? The list is quite extensive.

- You can determine the most suitable lenses, heights and locations for camera installation in order to provide viewing areas with possibility to: detect and identify a person and also read license plates.
- You can choose the best camera location for the desired outcome using the graphics window with CAD interface.
- VideoCAD can help you calculate the horizon-
tal projection sizes of viewing, person detecting, identifying and license plate reading areas to draw them on the object plan.
- You can choose the best camera location for the desired outcome using the graphics window with CAD interface.
- VideoCAD can help you calculate the horizontal projection sizes of viewing, person detecting, identifying and license plate reading areas to draw them on the object plan.
- It is possible to measure distortions of the viewing area arising from natural obstacles.
- VideoCAD allows you to easily calculate the image size of any object on a CCTV display (as seen by a camera), in the percentage of the display size, in pixels, TV lines and millimetres.
- VideoCAD can produce a drawing containing two projections of objects layout with their respective camera images. Also, the viewing areas are calculated, indicating cable distances, showing grid coordinates and text to be pasted into explanatory notes as an illustration as well.
- With VideoCAD it is also possible to produce a text file with full description of all the cameras in the project, viewing areas and cables. This can be easily pasted into the project as text or used as installation instructions.
- You can study the influence of the criteria of person detection, identification and license plate reading on the sizes and location of the corresponding areas by changing the criteria according to the video image quality obtained.
- You can study the principles of object representation in different viewing positions using test objects and the graphic window.
- VideoCAD helps you calculate the length and the electric parameters of the cables.
- VideoCAD optimises your system design by showing you minimum number of required cameras and cable, which increases your chances in winning various tenders.
- The automation in VideoCAD reduces your wasted time in trying to find out the correct camera position and improves the design quality.

To summarise, VideoCAD allows you to do the following:
- Calculate a view area horizontal projection according to the lens focal length, image sensor format, camera installation height, the required minimal and maximal heights and the maximal range of surveillance.
- Calculate the horizontal projections of the person detection
- Identify license plate recognition areas according to the lens focal length, image sensor format.
- Define the camera installation height, the required maximum height and range of surveillance.
- Determine a full or partial object hitting in the
CCTV design tools

- **CCTV design tools** and techniques in non-typical situations lead to considerable errors.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

Why Wait?

New Fiber Optic Universal Data Transceiver

International Fiber Systems Incorporated (IFS), a leading manufacturer of fiber optic transmission equipment, has announced the introduction of its D2510WDM Series Universal Serial Data Transceiver. The IFS D2510WDM Series is the first environmentally hardened universal serial data transceiver that supports data rates up to 512kbps. This unit provides transmission of a single RS-232, RS-422 or RS-485 serial data signal over one multimode optical fiber.

The IFS D2510WDM Transceiver is ideal for applications where there are many different types of serial data present. These include applications where multiple systems are being integrated over fiber and multiple camera manufacturers with different data protocols with different data rates are being used. On applications where fire alarm, access control and camera control data is required but operating with different data protocols and data rates. By utilizing the IFS D2510WDM transceiver the user can save time, labor and avoid confusion during installation. It is also used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.

VideoCAD operates with any correct parameters either selected from the list or typed.

VideoCAD can be used for the prompt, but exact calculations of the view area projections into a graphical part of a project. It can also be used to perform a view area analysis to choose the most suitable camera location and lens parameters.

VideoCAD can be very effective for use in CCTV designer training.